Smart Analytics: Panduan Visual Regresi dan Klasifikasi dengan Orange Data Mining di Era Data Digital
Keywords:
Smart Analytics, Regresi, Klasifikasi, Orange Data MiningSynopsis
Buku ini dirancang secara visual dan aplikatif untuk membantu pembaca memahami konsep regresi dan klasifikasi menggunakan Orange Data Mining, sebuah perangkat lunak open source yang intuitif. Di tengah kemajuan teknologi digital dan kebutuhan pengambilan keputusan berbasis data, kemampuan analisis menjadi kompetensi penting bagi akademisi dan praktisi. Dengan pendekatan langkah demi langkah dan studi kasus sosial-politik yang kontekstual, buku ini tidak hanya mengajarkan teknik analisis data, tetapi juga menanamkan pemahaman mendalam tentang penggunaannya dalam menjawab persoalan kebijakan publik. Disusun oleh dosen Fakultas Ilmu Sosial dan Ilmu Politik Universitas Muhammadiyah Palangka Raya, buku ini merupakan kolaborasi antara keilmuan sosial dan kecakapan teknologi, yang diharapkan mampu meningkatkan literasi data serta mendukung pembentukan kebijakan yang lebih responsif di era digital.
Buku ini dapat diperoleh pada tautan berikut.
ISBN: 978-623-90078-8-1
References
Aggarwal, C. C. (2015). Data Mining: The Textbook. Springer.
Alpaydin, E. (2020). Introduction to Machine Learning. MIT Press.
Amrin, A., & Pahlevi, O. (2022). Implementation of Logistic Regression Classification Algorithm and Support Vector Machine for Credit Eligibility Prediction. Jurnal Informatics Telecommunication Engineering, 5(2), 433–441. https://doi.org/10.31289/jite.v5i2.6220
Dhar, V. (2013). Data science and prediction. Communications of the ACM, 56(12), 64–73.
Geron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (2nd ed.). O’Reilly Media.
Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques (3rd ed.). Elsevier.
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction to Statistical Learning: With Applications in R. Springer.
Kelleher, J. D., Mac Carthy, M., & Korvir, B. (2015). Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies. MIT Press.
Khan, W., Zaki, N., Masud, M. M., Ahmad, A., Ali, L., Ali, N., & Ahmed, L. A. (2022). Infant birth weight estimation and low birth weight classification in United Arab Emirates using machine learning algorithms. Scientific Reports, 12(1), 1–12.
Mateo, F., Tarazona, A., & Mateo, E. M. (2021). Comparative study of several machine learning algorithms for classification of unifloral honeys. Foods, 10(7), 1543.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
Provost, F., & Fawcett, T. (2013). Data Science for Business: What You Need to Know About Data Mining and Data-Analytic Thinking. O’Reilly Media.
Russell, S., & Norvig, P. (2021). Artificial Intelligence: A Modern Approach (4th ed.). Pearson.
Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press.
Sinha, A. (n.d.). Utilization of Machine Learning Models in Real Estate House Price Prediction. Amity Journal of Computational Sciences (AJCS), 4(1), 18–23. Retrieved from www.amity.edu/ajcs
Tan, P. N., Steinbach, M., Karpatne, A., & Kumar, V. (2018). Introduction to Data Mining (2nd ed.). Pearson.
Wiradinata, T., Tanamal, R., Saputri, T. R., & Soekamto, Y. S. (2021, September). An Implementation of Support Vector Machine Classification for Developer Academy Acceptance Prediction Model. In 2021 2nd International Conference on Innovative and Creative Information Technology (ICITech) (pp. 110–116). IEEE.
Wirth, R., & Hipp, J. (2000, April). CRISP-DM: Towards a Standard Process Model for Data Mining. In Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining (Vol. 1, pp. 29–39).
Yang, L., Chen, Y., Xu, N., Zhao, R., Chau, K. W., & Hong, S. (2020). Place-varying impacts of urban rail transit on property prices in Shenzhen, China: Insights for value capture. Sustainable Cities and Society, 58, 102140. https://doi.org/10.1016/j.scs.2020.102140
Zhou, Z. H. (2021). Machine Learning. Springer Nature.

Downloads
Published
Categories
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.